
www.manaraa.com

Building secure file systems out of Byzantine storage∗

David Mazières and Dennis Shasha
NYU Department of Computer Science

{dm,shasha}@cs.nyu.edu

ABSTRACT

This paper shows how to implement a trusted network file system
on an untrusted server. While cryptographic storage techniques
exist that allow users to keep data secret from untrusted servers,
this work concentrates on the detection of tampering attacks and
stale data. Ideally, users of an untrusted storage server would im-
mediately and unconditionally notice any misbehavior on the part
of the server. This ideal is unfortunately not achievable. How-
ever, we define a notion of data integrity called fork consistency in
which, if the server delays just one user from seeing even a sin-
gle change by another, the two users will never again see one an-
other’s changes—a failure easily detectable with on-line commu-
nication. We give a practical protocol for a multi-user network file
system called SUNDR, and prove that SUNDR offers fork consis-
tency whether or not the server obeys the protocol.

1. INTRODUCTION

There are many reasons not to trust one’s file server. An unscrupu-
lous person with administrative access can easily tamper with files,
making modifications that go undetected. Yet people often entrust
servers to people who have no role in creating or using the data
stored on them—for instance system administrative consultants or
data warehouse employees. Furthermore, network intruders often
penetrate servers to gain privileged access.

Incorrect server behavior can be categorized as either fail-stop or
Byzantine. Fail-stop behavior encompasses failures in which the
server is unable or unwilling to perform an expected task, such as
returning a file it should be storing. People deal with such problems
through disk and server redundancy and backups. Byzantine be-
havior, by contrast, includes faulty actions that may go undetected,
such as subtle, malicious tampering by hackers or unscrupulous

∗A full version of this paper is available as NYU computer science
department technical report TR2002–826 [12].

This research was supported in part by National Science Founda-
tion awards CCR–0093361 and IIS–9988345.

employees. This work is the first to show how to render Byzantine
file server failures readily detectable.

In an ideal network file system, if one user writes and closes a file,
the next user to open the file should see the exact contents just writ-
ten. In an untrusted setting, one can gain some assurance of data
integrity with digital signatures, but a signature cannot guarantee
that a user is reading the most recent version of a file. If the last
signed file update user u1 sees from user u2 is 24 hours old, does
this mean u2 hasn’t logged in for a day, or is the file system con-
cealing u2’s updates from u1?

We propose a slight weakening of traditional file system consis-
tency semantics called fork consistency. A file system with fork
consistency might conceal users’ actions from each other, but if it
does, users get divided into groups and the members of one group
can no longer see any of another group’s file system operations.
Users can detect such partitioning through any available out-of-
band communication—from conversation (“Did you see the new
file?”), to client-to-client gossip protocols, to trusted on-line version-
verification devices.

The remainder of this paper describes the data structures and pro-
tocol of a multi-user network file system called SUNDR (Secure
Untrusted Data Repository). We prove that SUNDR guarantees
fork consistency, whether or not the server obeys the protocol. As
described here, SUNDR does not provide data secrecy. We intend
to achieve secrecy by layering existing cryptographic storage tech-
niques on top of SUNDR. However, since the consistency protocol
is the more novel contribution, we will not address secrecy in this
paper.

Each SUNDR user has a public key for digital signatures. A user’s
private key must remain secret from all other system elements, in-
cluding the server and other users. Because the user signs its up-
dates, neither the server nor any other user can forge updates from
that user. SUNDR also requires every client to have a small amount
of persistent storage so as to remember some version information
about the last message it has signed.

SUNDR is based on the premise that digital signatures can be com-
puted faster than network round trip times and verified highly effi-
ciently. This assumption is increasingly valid as hardware speeds
increase (and the speed of light doesn’t). Today, an 800 MHz Pen-
tium III can compute 1,024-bit Rabin signatures in 7 msec and ver-
ify them in 50 µsec. Some patented algorithms are even faster.
Esign, for instance, achieves 350 µsec signatures and 200 µsec ver-
ifications with 2,048-bit keys. In SUNDR, opening a file or closing



www.manaraa.com

a modified file requires the client to compute two digital signatures
and wait for one network round trip. A third, asynchronous mes-
sage is required before another user can access freshly written con-
tents. Concurrent operations can be piggybacked into a single pair
of digitally signed messages, allowing heavily-loaded clients to re-
duce the total number of signatures they compute.

2. RELATED WORK

Recently, there has been growing interest in peer-to-peer storage
systems comprised of potentially untrusted nodes. OceanStore [2]
has envisaged data migrating all over the world to follow users, but
has weak consistency and security guarantees. xFS [1] introduced
the idea of serverless network file systems, while Farsite [4] investi-
gated the possibility of spreading such a file system across people’s
unreliable desktop machines. Several new distributed hash tables
such as Chord [18] and Pastry [16] show the potential to scale to
millions of separately administered volunteer nodes, with CFS [6]
layering a read-only file system on top of such a highly distributed
architecture. These systems can all benefit from SUNDR’s proto-
col, which is the first to implement anything resembling traditional
file system semantics without trusting the storage infrastructure.

A number of file systems in the past have used cryptographic stor-
age to keep data secret in the event of a server compromise. The
swallow [15] distributed file system used client-side cryptography
to enforce access control. Clients encrypted files before writing
them to the server. Any client could read any file, but could only
decrypt the file given the appropriate key. Unfortunately, one could
not grant read-only access to a file. An attacker with read access
could, by controlling the network or file server, substitute arbitrary
data for any version of a file.

CFS [3] allows users to keep directories of files that get transpar-
ently encrypted before being written to disk. CFS does not al-
low sharing of files between users, nor does it guarantee freshness
or integrity of data. It is intended for users to protect their most
sensitive files from prying eyes, not as a general-purpose file sys-
tem. Cepheus [8] adds integrity and file sharing to a CFS-like file
system, but trusts the server for the integrity of read-shared data.
SNAD [14] can use digital signatures for integrity, but does not
guarantee freshness. PFS [17] is an elegant scheme for checking
the integrity of a file system stored on an untrusted disk. With
minor modifications, PFS could make strong freshness guarantees.
However, PFS is really a local file system designed to reside on un-
trusted, potentially remote disks. Users on multiple clients cannot
simultaneously access the same file system.

The Byzantine fault-tolerant file system, BFS [5], uses replication
to ensure the integrity of a network file system. As long as more
than 2/3 of a server’s replicas are uncompromised, any data read
from the file system will have been written by a legitimate user.
SUNDR, in contrast, does not require any replication or place any
trust in machines other than a user’s client. If data is replicated
in SUNDR, only one replica need be honest for the file system to
function properly. However, SUNDR and BFS provide different
freshness guarantees.

SUNDR uses hash trees, introduced in [13], to verify a file block’s
integrity without touching the entire file system. Duchamp [7],
BFS[5], SFSRO [9] and TDB [10] have all made use of hash trees
for comparing data or checking the integrity of part of a larger col-
lection of data.

3. ARCHITECTURE

SUNDR decomposes the problem of reading proper file data into
two parts. First, starting with a bit string known as a user’s i-handle
and a file identifier called the i-number, a SUNDR client can retrive
and verify the integrity of any block in the file. Second, there is a
protocol for users to update their i-handles and for each user to
ensure she has the latest i-handle of every other user. We describe
the first procedure in this section, deferring the tougher problem
problem of i-handle consistency to the next section.

We begin with a brief overview of SUNDR’s client-server architec-
ture and file system metadata structures. We simplify the descrip-
tion somewhat so as to leave room for the a detailed description and
proof of the consistency protocol in the next section. The particular
file system we describe provides a practical and concrete use of the
consistency protocol, though our technique is potentially of more
general applicability.

SUNDR is organized as a server and a set of clients. The server
operates at a lower level than conventional file servers. It stores
blocks of data for users, but neither understands nor interprets the
blocks that it stores. The basic interface to the server consists
of three RPCs, STORE, RETRIEVE, and UNREFERENCE. STORE

stores a chunk of data on the server. RETRIEVE retrieves a block
by its collision-resistant cryptographic hash. In case a block is
stored multiple times, the server keeps a count for each user of
how many times the user has stored the block. The UNREFERENCE

RPC decrements a user’s reference count (if not already zero), and
reclaims the storage when a block’s count goes to zero for all users.

SUNDR clients are responsible for interpreting the data chunks
stored at servers as inodes, directory blocks, and file data. To en-
sure the integrity of the file system, SUNDR relies on a collision-
resistant cryptographic hash function and a digital signature scheme.
We assume the signatures are existentially unforgeable against a
chosen message attack. Though of course there exists a finite but
negligible chance of the cryptography failing, for the rest of this
paper we simply assume that no collisions occur and no signatures
are forged.

Every user of a SUNDR file system has a public key. For the pur-
poses of this paper, we do not care how these keys are managed, so
long as all parties agree on every user’s public key. One possibility
is to embed the superuser’s public key in the file system’s path-
name, as in SFS [11], and for the keys of other users to reside in
some file /etc/sundr users owned by the superuser and which
the server also knows how to retrieve. There is also a file /etc/

group indicating which users are in which groups. The SUNDR
server authenticates the users it communicates with, so as to prevent
one user from unreferencing another’s blocks. The server might
also provide some mechanism to enforce disk quotas on users. Fi-
nally, the server itself has a public key known to users (for instance
certified by the superuser’s public key), so that clients can authenti-
cate the server. We assume that all RPCs are authenticated, so that
users can hold the server responsible for any incorrect replies.

In addition to storing blocks, the server stores a signed version
structure for each user and group, and also some information about
operations in progress. A version structure consists of version data
(which we will describe in the next section) and an i-handle. The
i-handle is a single cryptographic hash with which one can verify
the integrity of any block of any file owned by a particular user. i-

2



www.manaraa.com

metadata

Indirect Block

B0 B1 B7 B8

H

...

H

H

File Data Blocks

· · ·Virtual Inode

H(B0), size

H(H(B7), . . .), size

H(B1), size

H(B8), size

H(B7), size

...

Figure 1: The SUNDR virtual inode structure

handles are the result of recursively hashing file system data struc-
tures in a manner similar to the SFSRO file system [9]. We describe
these data structures from the ground up.

The lowest-level data structure in SUNDR is the virtual inode,
shown in Figure 1, with which one can efficiently retrieve and ver-
ify any portion of a file or directory. The virtual inode contains a
file’s metadata and the size and cryptographic hashes of its blocks.
For large files, the inode also contains the hash of an indirect block,
which in turn contains hashes and sizes of file blocks. For larger
files, an inode can point to double-, triple-, or even quadruple-
indirect blocks. The hash of a virtual inode is known as a file han-
dle. Given a file handle, one can retrieve any block of the file with
RETRIEVE RPCs, first retrieving the inode by the file handle, then
retrieving data and/or indirect blocks by the hashes in the inode.

Each user and group also has an ordered list, known as the i-table,
mapping 64-bit per-user virtual inode numbers, or i-numbers, to file
handles. An i-table lists every file belonging to a particular user or
group. The i-table is broken into blocks, converted to a hash tree,
and each node of the tree stored at the SUNDR server. The hash
of the tree’s root is the i-handle of the user or group. Given an i-
handle, one can retrieve and verify the file handle of any i-number
by retrieving the appropriate intermediary blocks from the server.
Directories also use virtual inodes. The data blocks of a directory
contain a list of 〈file name, user, i-number〉 triples, sorted by file
name. By convention, inode number 2 in the superuser’s i-table is
the root directory of the file system.

To modify the file system, a client computes a new i-handle, stores
new blocks at the SUNDR server, and computes and signs a new
version structure. The client then updates its version structure on
the server using two more RPCs, UPDATE and COMMIT, described
in the next section. Finally, the client unreferences any blocks it no
longer needs.

4. CONSISTENCY PROTOCOL

The goal of SUNDR’s consistency protocol is to make it as easy
as possible to detect whether the server has faithfully provided a
consistent view of the file system to all clients. As we will show,
if a SUNDR server fails to show one user another’s updates, either
user will detect the attack upon seeing any subsequent file system
operation by the other, even if through a third user. We call this

property fork consistency. This section begins with a formal defi-
nition of fork consistency. We then list and prove a set of criteria
sufficient for any protocol to achieve fork consistency. Finally, we
develop three successively more efficient and general protocols and
show that they satisfy the criteria for fork consistency.

The file system literature uses the term close-to-open consistency to
speak of the consistency of a wide variety of operations. In practice,
some file system calls (such as truncate) synchronously modify a
file without opening or closing it, and must also be immediately
visible to other users. Thus, for the purposes of this paper, we will
speak of fetches and modifications rather than opens and closes, and
we will concern ourselves with fetch-modify consistency. A fetch
is the process by which a client either validates its cached copy of
a file or downloads new contents from the server. Modification is
the process through which a client makes new file system content
visible to other clients. (Modification can occur on file closes, but
also on fsync calls and certain metadata operations).

Definition 1 A client is an entity that produces a set of fetch and
modify requests and sends them to the server. Each request has a
wall-clock time associated with it called the issue time.

Conceptually, the issue time corresponds to the time at which soft-
ware invoked the file system’s fetch or modify routine. If all goes
well, the routine will return at some later time we call the comple-
tion time. Note we do not assume that clients have synchronized
clocks. Thus, a client will not know the issue time of its own oper-
ations.

Definition 2 A principal is an entity authorized to access the file
system. Each principal has a public signature key, the private half
of which we assume is unknown to the server.

Examples of principals include a user, a user acting as a member
of a group, and a client acting on behalf of a user. Note one private
key may speak for multiple principals, as when a user is a member
of several groups.

Definition 3 A set of fetch and modify operations on a file system
is orderable if each operation has a completion time later than its

3



www.manaraa.com

issue time and there exists a partial order, happens before, on the
operations such that:

1. If the completion time of operation O1 is earlier than the
issue time of operation O2, then O1 happens before O2.

2. Happens before orders any two operations by the same client
(even if both operations are issued before either completes).

3. Happens before totally orders all modifications to any given
file.

4. Happens before orders any fetch of a file with respect to all
modifications to the same file.

Orderability restricts but does not completely specify the order of
operations. Once an operation completes, it happens before any
subsequently issued operation. For concurrent operations, however,
the file system is free to choose any order, so long as dependent
operations have a definite order.

Definition 4 A set of fetch and modify operations is fetch-modify
consistent iff the operations are orderable and any fetch F of a file
f returns the contents of the file produced by exactly the modifica-
tions that happened before F , in the order specified by the happens
before relation.

Fetch-modify consistency relates the order of operations to the re-
sults of fetch operations, but leaves the precise semantics of a mod-
ification open. If modifications always overwrite the entire contents
of a file (as in SUNDR), a fetch-modify consistent file system need
only return the result of the last modification to a fetched file. File
systems in which modifications change only part of a file must re-
turn the effect of composing all previous modifications in happens
before order.

Definition 5 Given a set of operations that have completed on a
file system, a forking tree is a tree in which each node has an as-
sociated set of operations, called a forking group, and the forking
groups have the following properties:

1. Every forking group is fetch-modify consistent.

2. For every client c, there is at least one forking group that
contains every operation by c.

3. For any operation O, the set of nodes whose forking groups
contain O includes a common ancestor, n, and all descen-
dents of n.

4. If two nodes’ forking groups both contain operations O1 and
O2, and O1 happens before O2 in the first forking group,
then O1 also happens before O2 in the second forking group.

5. Every operation in a node’s forking group either occurred in
the parent node’s forking group or else happened after every
operation in the parent node’s forking group.

Definition 6 A file system is fork consistent iff it always guaran-
tees the existence of a forking tree on the set of completed opera-
tions.

Informally, each branch of a forking tree represents a failure of the
server to deliver fetch-modify consistency. Initially, the operations
of all clients are in the same (root) forking group, G0. Then, if,
say, c1 makes a modification M to file f , M completes, and c2

subsequently issues a fetch F that returns an older version of f , M
and F must occur in two new forking groups—G1 for M and sub-
sequent operations by c1, and G2 for F and subsequent operations
by c2. At this point, c1 can never see another operation by c2 and
vice versa (that’s why we want a tree topology). Moreover, no later
operations by other clients can go in G0. Thus, the set of clients
is partitioned into two groups that will never again see each others’
operations. This situation is very likely to be noticed soon through
out-of-band communication between clients or users.

4.1 Protocol correctness theorem
Protocol correctness theorem: A set of (completed) operations on
a file system is fork consistent if there exists a partial order < on
operations with the following two properties:

1. Every two distinct operations created by a single client are
ordered by <.

2. For any operation q, the set {o | o ≤ q} of all operations (by
any client) less than or equal to q is totally ordered and fetch-
modify consistent with < as the happens-before relation.

Proof: Recall that a file system is fork consistent iff it always guar-
antees the existence of a forking tree on all completed operations
of all clients.

Consider the set X = {x1, . . . , xk} of maximal operations by <.
(If the file system has been fetch-modify consistent and hasn’t stop-
ped completing operations, the set will have only one element.)
Consider the collection C = {C1, . . . , Ck} of sets of operations
such that Ci = {y | y ≤ xi}. By condition 2, the operations
in each Ci are totally ordered. For that reason, we will reinterpret
the Cis to be sequences of operations ordered by <. We call these
sequences chains.

We now construct a forking tree. The nodes of the tree, the forking
groups, consist of the chains and the greatest common prefix of
every pair of chains. A node n’s parent is simply the the longest
strict prefix of n that is also a node. Thus, the chains constitute the
tree’s leaves, and the least common ancestor of any two nodes is
their greatest common prefix.

For example, consider three maximal chains:

s1 = A, B, C, D, E, F

s2 = A, B, C, D′′, E′′

s3 = A, B, C ′, D′, E′

Figure 2 shows the resulting tree.

Now let us verify the five required properties of the forking tree:

1. Every forking group is fetch-modify consistent.

Since chains are totally ordered, and each forking group is a
prefix of a chain, every forking group consists of a maximum
element, q, and every operation o ≤ q. Thus, it is fetch-
modify consistent by condition 2.

4



www.manaraa.com

A, B, C’, D’, E’

A, B, C, D’’, E’’A, B, C, D, E, F

A,B

A, B, C

Figure 2: Tree resulting from the three maximal chains.

2. For every client c, there is at least one forking group that
contains every operation by c.

Since all operations formed by c are totally ordered by condi-
tion 1, they form part of a leaf forking group by construction.

3. For any operation O, the set of nodes whose forking groups
contain O includes a common ancestor, n, and all descen-
dents of n.

By construction, the intersection of any set of forking groups
is also a forking group. Let n be the intersection of all the
forking groups containing O. n obviously contains O. n is
also a prefix of any other node containing O, and thus must
be a common ancestor. It also follows from our construc-
tion that any descendent of n is a superset of n, and hence
contains O.

4. If two nodes’ forking groups both contain operations O1 and
O2, and O1 happens before O2 in the first forking group,
then O1 also happens before O2 in the second forking group.

Since all forking groups use the same ordering relation, they
will order any common operations in the same way.

5. Every operation in a node’s forking group either occurred in
the parent node’s forking group or else happened after every
operation in the parent node’s forking group.

By construction, a child of node n contains an extension of
the operations in n. Any member of the proper extension fol-
lows every operation in n by the ordering relation that corre-
sponds to happens before.

4.2 Bare-bones protocol
We describe the SUNDR protocol in stages. We begin with a bare-
bones protocol that provides fork consistency for an unrealistically
simple usage scenario. We then extend this bare-bones protocol,
using the same intuition, to achieve a practical, fork-consistent file
system protocol.

In the bare-bones scenario, there is a single client per user produc-
ing all of that user’s requests. Thus, we can employ the terms user
and client somewhat interchangeably. We also assume that each
file can be written by only one user; there are no group-writable
files. Finally, we assume a low degree of concurrent file system
access. Subsequent sections show how to handle concurrency ef-
ficiently and and how to deal with group-writable files. Finally,

Section 4.5 describes how the mechanism for group-writable files
can also allow one user to employ several clients. We also discuss
several further optimizations of the protocol.

Recall that each user of the file system has a version structure, con-
sisting of an i-handle and version data. The version data contains
the name of the user whose version structure it is (the structure’s
owner, by whose private key the structure should be signed), and a
list of user-version pairs.

In all the SUNDR protocols, every signed i-handle has a monotoni-
cally increasing version number. Moreover, users sign not just their
own version numbers, but also their view of other users’ version
numbers. We will define an ordering on version structures such
that with an honest server, all operations are totally ordered. How-
ever, any fetch-modify consistency failure results in two unordered
version structures. Since any client would detect the attack if it saw
the unordered structures, clients are split into forking groups that
can no longer see each other’s updates. We formalize the idea as
follows.

Definition 7 We use the following notation for version structures:

{VRS, h, u, u1-n1 u2-n2 . . .}
K
−1
u

VRS is just a constant identifying the type of the signed data. h
is the i-handle. u is the owner of the version structure. We use a
hyphen to denote user-version pairs, so that ui-ni means that user
ui is at version number ni. We use the subscript K−1

u to denote
that the structure has been signed by user u’s private key.

Definition 8 For any version structure x and user u, we let x[u]
designate either u’s version number in x, or else 0 if u does not
appear in x.

Definition 9 If x and y are two version structures, we say that x ≤
y iff for all users u, x[u] ≤ y[u]. x < y iff x ≤ y and there exists
a user v such that x[v] < y[v].

The server maintains the latest version structure signed by each
user. We call this collection of signed structures the version struc-
ture list, or VSL. The server is responsible for sending the latest
VSL to anyone performing a fetch or modify operation. Each time
a user fetches or modifies a file, it must update its entry in the VSL
on the server with RPCs. User u updates its VSL entry as follows:

1. u obtains an exclusive lock on and downloads the VSL. (The
lock is coordinated by the server, and thus is not trusted.)
For each user v with a signed entry in the VSL, let yv be that
user’s version structure.

2. u verifies that yu is its current version structure, and verifies
the signatures on other entries of the VSL.

3. u creates a new version structure, x, initializing it with yu. u
updates the i-handle in x if necessary.

4. For each user v in the VSL, u sets x[v] to that user’s signed
version number, x[v]← yv[v].

5. u increments its own version number x[u]← x[u] + 1.

5



www.manaraa.com

6. u verifies that all entries in the previous VSL (including its
old entry yu) are totally ordered, and that x is greater than all
VSL entries. (Note that this verification will fail if for some
some users v and w, yv[w] > yw[w], because then x will not
exceed yv .)

7. u signs x and sends it to the server, releasing the lock.

8. The server checks that x is totally ordered with respect to
the other version structures in the VSL. (This is protection
against malicious clients.)

The issue time of an operation is the moment the client begins
step 1 of the protocol. The completion time is when the last step
finishes.

We illustrate the protocol with an example. Consider two file sys-
tem users, u and v, both initially at version number 1. The VSL
will contain the following entries:

yu = {VRS, hu, u, u-1 . . .}
K
−1
u

yv = {VRS, hv, v, u-1 v-1 . . .}
K
−1
v

If u follows the protocol to update its i-handle to h′u, its version
number will also increase in the VSL:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K
−1
u

yv = {VRS, hv, v, u-1 v-1 . . .}
K
−1
v

At this point yu ≥ yv . If v now updates its version structure (for
instance by fetching a file), v’s new version structure will reflect
u’s new version number:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K
−1
u

yv = {VRS, hv, v, u-2 v-2 . . .}
K
−1
v

At this point, yv ≥ yu. If, however, the server failed to provide v
with u’s latest version structure, v would not reflect u’s new ver-
sion, and the VSL would contain:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K
−1
u

yv = {VRS, hv, v, u-1 v-2 . . .}
K
−1
v

Now the VSL is unordered (yu 6≤ yv and yv 6≤ yu).

Proposition one client: All version structures created by a single
client that obeys the bare-bones protocol are totally ordered.

Proof: Immediate by steps 2-6 of the protocol.

Fetch-modify lemma: Suppose all clients follow the bare-bones
protocol. Let q be a version structure. Let O be the set of all
completed operations by all clients satisfying O = {o | vs(o) ≤
q}, where vs(o) designates the version structure of o. Whether or
not the server obeys the protocol, if O is totally ordered by <, then
O is fetch-modify consistent with < as the happens-before relation.

Proof: We first must show that O is orderable using < as the hap-
pens before relation. The execution of the protocol gives each op-
eration a completion time after its issue time. Moreover, since <
totally orders O, it satisfies requirements 2–4 of orderability. For
the first requirement of orderability, suppose two version structures
x and y are ordered and x’s operation completed before y’s was is-
sued. Let u be the user that signed x, and v be the user that signed

y. If u = v, then the protocol ensures x < y. Otherwise, let y′

be v’s version structure in the VSL u received while creating x.
y′ must have completed before x (it had already been signed when
u signed x). By assumption, x completed before y issued. Thus,
y′ completed before y issued. Since y and y′ both come from the
same client, it follows that y′ < y and y′[v] < y[v]. By step 4 of
the protocol, x[v] = y′[v], implying x[v] < y[v]. Thus, since x
and y are ordered, it must be that x < y.

Now, we show that the file semantics are correct with respect to <.
Let y, signed by v, be the version structure corresponding to a fetch
in O of file f . By assumption, O must contain all operations with
version structures less than y. Thus, any VSL entries that could
have passed step 6 of the protocol when v signed y must be in O.
Let x, signed by u, be the greatest version structure less than y
(and therefore in O) associated with a modification of f . It follows
that for any x′ signed by u, if x ≤ x′ < y, then x′ designates the
same contents for f as x. In particular, let x′ be u’s entry in the
VSL upon which y is based. Since x′[u] = y[u] and users sign at
most one version structure for each of their own version numbers,
x′ must be the greatest version structure signed by u less than y.
Thus, x ≤ x′ < y and v’s fetch must have returned the same con-
tents for f as designated by x’s i-handle.

No join lemma: Suppose there are two version structures x and y
such that x 6≤ y and y 6≤ x. If clients follow the protocol, no client
will sign any version structure greater than both x and y.

Proof: First note that for any client c and number n, c will sign
at most one version structure t with t[c] = n. Moreover, any two
version structures t and t′ signed by c are ordered, and t < t′ iff
t[c] < t′[c].

Assume that there exists a version structure w such that x < w and
y < w. There must be at least one minimal version structure z ≤ w
such that x ≤ z and y ≤ z. In fact, since x and y are unordered,
z cannot be either of them, and we must have x < z and y < z.
Let L be the VSL that was sent to the client that signed z and from
which this client calculated z.

Let u be the user that signed x, and let x′ be u’s entry in L. It must
be the case that x ≤ x′. We show this by contradiction. Assume
x′ < x < z.

• It cannot be the case that z was signed by u, because then it
would follow that x′[u] < x[u] < z[u] and hence z[u] ≥
x′[u] + 2, which is impossible since the protocol sets z[u] =
x′[u] + 1.

• On the other hand, if z were signed by a different user from
u, then the protocol would set z[u] = x′[u]. Since x < z,
x[u] ≤ z[u] = x′[u], implying x ≤ x′.

By a similar argument, the structure y′ in L signed by the same user
as y must satisfy y ≤ y′. Since all version structures in L must be
ordered, we also have that x′ and y′ are ordered. Assume without
loss of generality that x′ < y′. We then have x ≤ x′ < y′ < z and
y ≤ y′, but then y′ contradicts the assumption that z is minimal.
Hence no such z exists.

6



www.manaraa.com

Bare-bones theorem: When clients follow the bare-bones proto-
col, they achieve fork consistency whether or not the server obeys
the protocol.

Proof: Using the < relation on version structures to order their
corresponding operations, the two conditions of the Protocol cor-
rectness theorem hold. Condition 1 holds by Proposition one client.
condition 2 holds for the following reason. For any version struc-
ture q, the set {o | o ≤ q} of all version structures less than q is
totally ordered by the No-join lemma. Therefore, the associated op-
erations are fetch-modify consistent with < as the happens-before
relation by the Fetch-modify lemma.

4.3 Increasing concurrency

The bare-bones protocol serializes all version structure updates with
a global lock on the VSL—an unacceptable restriction for a real
distributed file system. The full protocol therefore uses an addi-
tional mechanism to support concurrent version structure updates.
The basic approach is for users to declare pending updates to their
version structures (resulting from either file fetches or modifica-
tions) with signed update certificates. Other users can then concur-
rently perform non-conflicting operations on the file system.

An update certificate issued by user u has the form {UPD, u, n,
H(yu), inode-list}

K
−1
u

. UPD is just a constant (the type of the
signed message). n is u’s new version number in the forthcoming
version structure. H(yu) is a collision-resistant hash of u’s current
entry in the VSL. Note that n = yu[u] + 1, except when pipelin-
ing several updates. Finally, the update certificate also contains a
list of i-table entries of the form 〈i-number, file handle〉 for any file
inodes modified by the update, and 〈i-number, delta〉 for directory
inodes. In the case of a fetch, inode-list is empty.

We now extend the version structure so that, in addition to client-
version pairs, a version structure contains a (possibly empty) list of
client-version-hash triples that reflect concurrent updates by other
clients. A version structure must still contain one user-version pair
for each user, but may also contain user-version-hash triples for
consecutive version numbers up to and including the version num-
ber in any user-version pair.

The hash values are either a reserved value, ⊥, or else the output
of a function V whose domain is version structures. Informally,
V puts the elements of a version structure into canonical form, re-
moves the i-handle, and computes a collision resistant hash of the
result. Specifically, given a version structure

x = {VRS, u, h, u1-n1 u2-n2 . . . , uk-nk-hk . . .}

we compute V (x) as follows: First remove the i-handle, h. Then
sort the user-version pairs by user, and the user-version-hash triples
by user and version. Finally output a collision-resistant hash H of
the remaining, sorted fields of x.

To simplify the proof, we shall from now on assume that every
version structure x owned by u contains the triple u-x[u]-⊥.

Definition 10 We define the ≤ relation on extended version struc-
tures as follows. Given two version structures, x and y, we say
x ≤ y iff the following two conditions hold:

1. For all users u, x[u] ≤ y[u] (i.e., x ≤ y by the old defini-
tion).

2. For each user-version-hash triple u-n-h in y, one of the fol-
lowing conditions must hold:

(a) x[u] < n (x happened before the pending operation
that u-n-h represents), or

(b) x also contains u-n-h (x happened after the pending
operation and reflects the fact the operation was pend-
ing), or

(c) x contains u-n-⊥ and h = V (x) (x was the pending
operation).

We say x = y if x and y have identical contents except possibly for
the i-handle. We say x < y iff x ≤ y and x 6= y.

Proposition: The ≤ relation on version structures is transitive.

Proof: Let x ≤ y and y ≤ z. If x = y or y = z, then the propo-
sition is trivially true. Assume x < y and y < z. Condition 1
follows from the fact that (using numerical ≤) x[u] ≤ y[u] ≤ z[u]
for all u. For each user-version-hash u-n-h in z, if y[u] < n, then
we have x[u] ≤ y[u] < n. On the other hand, if y also contains
u-n-h, then either x[u] < n, or x contains u-n-h, or x contains
u-n-⊥ and V (x) = h.

The server now maintains a pending version list, or PVL, in addi-
tion to the VSL. The PVL consists of a set of update-certificate,
unsigned-version-structure pairs, 〈{UPD, u, n, H(yu), inode-list},
`〉. An update certificate declares an upcoming version structure
that will become part of the VSL, at which point the update certifi-
cate will be removed from the PVL. The unsigned version struc-
ture, `, has the same contents as u’s upcoming version structure,
except that ` has the value ⊥ instead of an i-handle.

User u now performs the following steps to update its entry in the
VSL, depicted graphically in Figure 3:

1. u sends the server an update certificate including its new ver-
sion number and any modified inodes.

2. The server sends the VSL and PVL to u, along with any old
version structures no longer in the VSL but still referenced by
update certificates in the PVL. (These old version structures
are needed only when pipelining updates.)

3. u sanity-checks all data received from the server in the pre-
vious step. All digital signatures must verify. All hashes in
update certificates must match version structures signed by
the same user. All version structures (signed and unsigned)
must be totally ordered by the new < relation. All old version
structures must be less than the same user’s entry in the VSL.
All version numbers in a particular client’s update certificates
must be consecutive and start at one greater than the version
structure in the VSL. The PVL must include the update cer-
tificate u signed in step 1 (and none signed by u with greater
version numbers—such certificates might exist if there are
pipelined updates).

7



www.manaraa.com

in VSL.

Client Server

Update Certificate

Client computes
new version structure.

Server sends current Version Structure
List plusall pending updates.

Version Structure List (VSL)
Pending Version List (PVL)

version structure

Server puts new version structure 

Figure 3: The concurrent bare-bones protocol.

4. u initializes a new version structure x, by processing the VSL
as in the bare-bones protocol. Then, for each client with an
update certificate, u increases the corresponding user’s ver-
sion number in x to match the version number n in the up-
date certificate. If one client has multiple update certificates,
u takes the one with the highest version number. Since u’s
own update certificate is in the PVL, x[u] will contain the
version number from step 1.

5. For every entry 〈{UPD, v, n, H(yv), inode-list}, `〉 in the PVL
except the one signed in step 1, u adds the triple v-n-V (`) to
x. For the update certificate in step 1, u adds u-x[u]-⊥ to x.
Intuitively, this encodes the history of operations in the PVL
into x.

6. For every version structure y in the VSL, u checks that y <
x. For all unsigned version structures ` in the PVL, u checks
that either ` < x or ` = x and corresponds to the update
certificate from step 1.

7. u signs x and sends it to the server. The server checks that x
is totally ordered with respect to the other version structures
in the VSL and PVL.

8. u checks for a modify-fetch conflict. If u is fetching a file
and the file is listed in one of the PVL’s update certificates,
there must be a pending modification to the file. In this case,
u does not return from the fetch call immediately, but instead
requests and waits for the server to send it the version struc-
ture corresponding to the latest version of the file. u checks
that this version structure matches the unsigned structure in
the PVL.

Proposition concurrent one client: All version structures created
by a single client that obeys the concurrent bare-bones protocol are
totally ordered.

Proof: Immediate by step 4 of the protocol.

Concurrent fetch-modify lemma: Suppose all clients follow the
concurrent bare-bones protocol. Let q be a version structure. Let
O be the set of all completed operations by all clients satisfying
O = {o | vs(o) ≤ q}, where vs(o) designates the version structure
of o. Whether or not the server obeys the protocol, if O is totally
ordered by <, then O is fetch-modify consistent with < as the
happens-before relation.

Proof: We first must show that O is orderable using < as the hap-
pens before relation. The execution of the protocol gives each op-
eration a completion time after its issue time. Moreover, since <
totally orders O, it satisfies requirements 2–4 of a happens before
relation. For the first requirement of happens before, suppose two
version structures x and y are ordered and x’s operation completed
before y’s was issued. Let u be the user that signed x, and v be the
user that signed y. If u = v, then the protocol ensures x < y. Oth-
erwise, since y was issued after x completed, u had already signed
x at the time v signed the update certificate for the operation asso-
ciated with y. No update certificate or version structure of y could
have a version≥ y[v] before v signed its update certificate. So, if x
followed the protocol, then x[v] < y[v]. Since x and y are ordered,
it must be that x < y.

Let y, signed by v, be the version structure corresponding to a fetch
F ∈ O of file f . By assumption, O must contain all operations
with version structures less than y. Thus, any VSL entries that

8



www.manaraa.com

could have passed step 6 of the protocol when v signed y must be
in O. Let x, signed by u, be the greatest version structure less than
y (and therefore in O) associated with a modification of f . It fol-
lows that for any x′ signed by u, if x ≤ x′ < y, then x′ designates
the same contents for f as x. Let x′ be u’s entry in the VSL upon
which y is based. If x ≤ x′, then F must have returned the same
contents for f as designated by x’s i-handle. If, on the other hand,
x′ < x < y, y must have seen an update certificate for version x[u]
of user u. But then by step 8 of the protocol, the fetch would have
waited for x before returning, and thus would base the file contents
returned on x’s i-handle.

Concurrent no join lemma: Suppose there are two version struc-
tures x and y such that x 6≤ y and y 6≤ x. If clients follow the
protocol, no client will sign any version structure greater than both
x and y.

Proof: As before, for any client c and number n, c will sign at most
one version structure t with t[c] = n. Moreover, any two version
structures signed by c are ordered.

Assume that there exists a version structure w such that x < w
and y < w. There must be at least one minimal version structure
z ≤ w such that x ≤ z and y ≤ z. Let L be the VSL and P be the
PVL that were sent to the client that signed z and from which this
client calculated z.

We first note that there must exist some x′ in L or P such that
x ≤ x′ < z. To see this, let u be the user that signed x, and let
x′′ be u’s entry in L. If x ≤ x′′, then we just let x′ = x′′. On
the other hand, if x′′ < x, then x′′[u] < x[u], and hence z must
contain some triple u-x[u]-V (x), which the signer of z would have
included only if some `x = x appeared in P . In this case we set
x′ = `x.

By a similar argument, there exists some y′ in L or P such that
y ≤ y′ < z. All version structures in L and P must be ordered
by the sanity check step of the protocol, so in particular x′ and y′

are ordered. Assume without loss of generality that x′ < y′. We
then have x ≤ x′ < y′ < z and y ≤ y′, but then y′ contradicts the
assumption that z is minimal, and hence no such z exists.

Concurrent Bare-Bones theorem: When clients follow the con-
current bare-bones protocol, they achieve fork consistency whether
or not the server obeys the protocol.

Proof: Using the < relation on version structures to order their cor-
responding operations, the two conditions of the Protocol correct-
ness theorem hold. Condition 1 holds by Proposition concurrent
one client. Condition 2 holds for the following reason. For any
version structure q, the set {o | o ≤ q} of all version structures less
than q is totally ordered by the Concurrent no-join lemma. There-
fore, the associated operations are fetch-modify consistent with
< as the happens-before relation by the Concurrent fetch-modify
lemma.

4.4 Generalizing to Groups

Until now, we have assumed that each user modifies files only in her
own i-table. In practice, systems often contain group-writable files

and directories that might be modified by several users. Groups
in SUNDR are treated similarly to users. Every group has its own
associated i-table, and each version structure additionally contains
a version number for every group. This change requires substantial
extensions to the protocol and proof, for which we refer the reader
to the full version of this paper [12].

4.5 Pragmatic considerations
Client failures. In the concurrent protocols, a fetch waits for a
conflicting modification. If the modification never completes, then
the fetch waits forever. However, this is not necessary. The fetch
could time out and return an error code, and the user could then
sign the same version structure it would have signed had it gotten
the version structure it was waiting for. With this change, we could
still construct a forking tree on all completed operations except the
fetches that returned error codes.

When a client failure causes an incomplete modify operation, the
user can repair the situation by logging into a working client and
reissuing the modification. All information necessary to reissue the
modification is included in the inode-list of the update certificate.

Malicious clients can write spurious data to files that they own,
but signatures prevent them from writing data to any other files.
They can send the server version structures that destroy the total
ordering of the VSL, but a well-behaved server will refuse such
updates. Even when bad clients collude with a bad server, the set of
completed operations by good clients on files that no bad client has
permission to write will still have fork consistency. In particular, If
c1 and c2 follow the protocol, c1 misses an update of file f by c2,
and no bad client can write f , then as before, c1 and c2 can never
again see each other’s updates.

Users logged into multiple clients. We have assumed so far that
each user runs on a single client. This is not realistic. However,
the relationship between clients and users is analogous to the one
between users and groups. So, one approach would be to create a
version structure entry for each client a user is logged into. There is
an optimization in which, while each user’s version structure must
still contain a version number for every client that user is logged
into, for users other than the signer, the version structure need only
contain a version number for one client—the one to make the most
recent modification on behalf of that user. There is another opti-
mization that allows clients eventually to stop appearing in version
structures after a user has logged out. A full description of these
optimizations is beyond the scope of this paper.

Bandwidth optimizations. Note finally that the server does not
need to send the full VSL in response to each update certificate, but
can instead send only new version structures since the last operation
by the same client.

5. SUMMARY

We have described SUNDR, a network file system whose proto-
col makes even Byzantine file server failures readily detectable.
Through digital signatures and a novel consistency protocol, SUNDR
automatically detects almost any incorrect or malicious behavior
on the part of the server. The only attack not immediately de-
tectable is effectively to create an exact replica of a file system
and partition users so that one group of users sees each replica and
the two groups’ operations are entirely concealed from each other.

9



www.manaraa.com

Even this attack is detectable however, if users have any ability to
communicate out-of-band. A simple pinging protocol, a trusted
version-verification server, and even informal human communica-
tion are sufficient to reveal such a partitioning attack.

6. ACKNOWLEDGMENTS

We’d like to thank Allan Gottlieb, M. Frans Kaashoek, David Mol-
nar, Robert Morris, and Marc Waldman for their helpful comments.

7. REFERENCES
[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,

David A. Patterson, Drew S. Roseli, and Randolph Y. Wang.
Serverless network file systems. ACM Transactions on
Computer Systems, 14(1):41–79, February 1996. Also
appears in Proceedings of the of the 15th Symposium on
Operating System Principles.

[2] David Bindel, Yan Chen, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, Westley Weimer, Christopher Wells, Ben
Zhao, and John Kubiatowicz. Oceanstore: An exteremely
wide-area storage system. In Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
190–201, 2000.

[3] Matt Blaze. A cryptographic file system for unix. In 1st ACM
Conference on Communications and Computing Security,
pages 9–16, November 1993.

[4] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system
deployed on an existing set of desktop pcs. In SIGMETRICS,
pages 34–43, 2000.

[5] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation, pages
173–186, New Orleans, LA, February 1999.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage with
cfs. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles, pages 202–215, Chateau Lake
Louise, Banff, Canada, 2001. ACM.

[7] Dan Duchamp. A toolkit approach to partially disconnected
operation. In Proceedings of the 1997 USENIX, pages
305–318. USENIX, January 1997.

[8] Kevin Fu. Group sharing and random access in
cryptographic storage file systems. Master’s thesis,
Massachusetts Institute of Technology, May 1999.

[9] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and
secure distributed read-only file system. In Proceedings of
the 4th Symposium on Operating Systems Design and
Implementation, 2000.

[10] Umesh Maheshwari and Radek Vingralek. How to build a
trusted database system on untrusted storage. In Proceedings
of the 4th Symposium on Operating Systems Design and
Implementation, San Diego, October 2000.

[11] David Mazières, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from file
system security. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles, pages 124–139, Kiawa
Island, SC, 1999. ACM.

[12] David Mazières and Dennis Shasha. Building secure file
systems out of byzantine storage. Technical Report
TR2002–826, NYU Department of Computer Science, May
2002.

[13] Ralph C. Merkle. A digital signature based on a conventional
encryption function. In Carl Pomerance, editor, Advances in
Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in
Computer Science, pages 369–378, Berlin, 1987.
Springer-Verlag.

[14] Ethan Miller, Darrell Long, William Freeman, and Benjamin
Reed. Strong security for distributed file systems. In
Proceedings of the 20th IEEE International Performance,
Computing, and Communications Conference, pages 34–40,
Phoenix, AZ, April 2001.

[15] David Reed and Liba Svobodova. Swallow: A distributed
data storage system for a local network. In A. West and
P. Janson, editors, Local Networks for Computer
Communications, pages 355–373. North-Holland Publ.,
Amsterdam, 1981.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Middleware, 2001.

[17] Christopher A. Stein, John H. Howard, and Margo I. Seltzer.
Unifying file system protection. In Proceedings of the 2001
USENIX. USENIX, June 2001.

[18] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applicatio ns. In
Proceedings of the ACM SIGCOMM ’01 Conference, San
Diego, California, August 2001.

10


